SparkStreaming实战:处理RDD队列流

1.需求:

利用SparkStreaming处理RDD队列流

2.代码:

(1)pom.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
<dependencies>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.0</version>
</dependency>

<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.1.0</version>
</dependency>
</dependencies>
(2)RDDQueueStream.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import org.apache.log4j.Logger
import org.apache.log4j.Level
import org.apache.spark.SparkConf
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.Seconds
import scala.collection.mutable.Queue
import org.apache.spark.rdd.RDD

object RDDQueueStream {

def main(args: Array[String]): Unit = {

System.setProperty("hadoop.home.dir", "/Users/macbook/Documents/hadoop/hadoop-2.8.4")
Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)

val conf = new SparkConf().setAppName("RDDQueueStream").setMaster("local[2]")

val ssc = new StreamingContext(conf,Seconds(1))

//需要一个RDD队列
val rddQueue = new Queue[RDD[Int]]()


for( i <- 1 to 3){
rddQueue += ssc.sparkContext.makeRDD(1 to 10)

Thread.sleep(5000)
}

//从队列中接收数据 创建DStream
val inputDStream = ssc.queueStream(rddQueue)

val result = inputDStream.map(x=>(x,x*2))

result.print()

ssc.start()
ssc.awaitTermination()

}
}

3.运行:

4.结果:

打赏
  • 版权声明: 本博客所有文章除特别声明外,著作权归作者所有。转载请注明出处!
  • Copyrights © 2015-2021 Movle
  • 访问人数: | 浏览次数:

请我喝杯咖啡吧~

支付宝
微信