Elasticsearch核心概念

1.近实时

近实时,两个意思,从写入数据到数据可以被搜索到有一个小延迟(大概1秒);基于es执行搜索和分析可以达到秒级。

2 Cluster(集群)

集群包含多个节点,每个节点属于哪个集群是通过一个配置(集群名称,默认是elasticsearch)来决定的,对于中小型应用来说,刚开始一个集群就一个节点很正常。

3 Node(节点)

集群中的一个节点,节点也有一个名称(默认是随机分配的),节点名称很重要(在执行运维管理操作的时候),默认节点会去加入一个名称为“elasticsearch”的集群,如果直接启动一堆节点,那么它们会自动组成一个elasticsearch集群,当然一个节点也可以组成一个elasticsearch集群。

4 Index(索引-数据库)

索引包含一堆有相似结构的文档数据,比如可以有一个客户索引,商品分类索引,订单索引,索引有一个名称。一个index包含很多document,一个index就代表了一类类似的或者相同的document。比如说建立一个product index,商品索引,里面可能就存放了所有的商品数据,所有的商品document。

5 Type(类型-表)

每个索引里都可以有一个或多个type,type是index中的一个逻辑数据分类,一个type下的document,都有相同的field,比如博客系统,有一个索引,可以定义用户数据type,博客数据type,评论数据type。

商品index,里面存放了所有的商品数据,商品document

但是商品分很多种类,每个种类的document的field可能不太一样,比如说电器商品,可能还包含一些诸如售后时间范围这样的特殊field;生鲜商品,还包含一些诸如生鲜保质期之类的特殊field

1
2
3
4
5
6
7
type,日化商品type,电器商品type,生鲜商品type

日化商品type:product_id,product_name,product_desc,category_id,category_name

电器商品type:product_id,product_name,product_desc,category_id,category_name,service_period

生鲜商品type:product_id,product_name,product_desc,category_id,category_name,eat_period

每一个type里面,都会包含一堆document

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
{

"product_id": "1",

"product_name": "长虹电视机",

"product_desc": "4k高清",

"category_id": "3",

"category_name": "电器",

"service_period": "1年"

}

{

"product_id": "2",

"product_name": "基围虾",

"product_desc": "纯天然,冰岛产",

"category_id": "4",

"category_name": "生鲜",

"eat_period": "7天"

}

6 Document(文档-行)

文档是es中的最小数据单元,一个document可以是一条客户数据,一条商品分类数据,一条订单数据,通常用JSON数据结构表示,每个index下的type中,都可以去存储多个document。

7 Field(字段-列)

Field是Elasticsearch的最小单位。一个document里面有多个field,每个field就是一个数据字段。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
product document

{

"product_id": "1",

"product_name": "高露洁牙膏",

"product_desc": "高效美白",

"category_id": "2",

"category_name": "日化用品"

}

8 mapping(映射-约束)

数据如何存放到索引对象上,需要有一个映射配置,包括:数据类型、是否存储、是否分词等。

这样就创建了一个名为blog的Index。Type不用单独创建,在创建Mapping 时指定就可以。Mapping用来定义Document中每个字段的类型,即所使用的 analyzer、是否索引等属性,非常关键等。创建Mapping 的代码示例如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
client.indices.putMapping({

index : 'blog',

type : 'article',

body : {

article: {

properties: {

id: {

type: 'string',

analyzer: 'ik',

store: 'yes',

},

title: {

type: 'string',

analyzer: 'ik',

store: 'no',

},

content: {

type: 'string',

analyzer: 'ik',

store: 'yes',

}

}

}

}

});

9.elasticsearch与数据库的类比

关系型数据库(比如Mysql) 非关系型数据库(Elasticsearch)
数据库Database 索引Index
表Table 类型Type
数据行Row 文档Document
数据列Column 字段Field
约束 Schema 映射Mapping

10.ES存入数据和搜索数据机制

(1)索引对象(index):

存储数据的表结构 ,任何搜索数据,存放在索引对象上

(2)映射(mapping):

数据如何存放到索引对象上,需要有一个映射配置, 包括:数据类型、是否存储、是否分词等

(3)文档(document):

一条数据记录,存在索引对象上

(4)文档类型(type):

一个索引对象,存放多种类型数据,数据用文档类型进行标识

打赏
  • 版权声明: 本博客所有文章除特别声明外,著作权归作者所有。转载请注明出处!
  • Copyrights © 2015-2021 Movle
  • 访问人数: | 浏览次数:

请我喝杯咖啡吧~

支付宝
微信